Image Labeling and Grouping by Minimizing Linear Functionals over Cones
نویسندگان
چکیده
We consider energy minimization problems related to image labeling, partitioning, and grouping, which typically show up at mid-level stages of computer vision systems. A common feature of these problems is their intrinsic combinatorial complexity from an optimization pointof-view. Rather than trying to compute the global minimum a goal we consider as elusive in these cases we wish to design optimization approaches which exhibit two relevant properties: First, in each application a solution with guaranteed degree of suboptimality can be computed. Secondly, the computations are based on clearly defined algorithms which do not comprise any (hidden) tuning parameters. In this paper, we focus on the second property and introduce a novel and general optimization technique to the field of computer vision which amounts to compute a sub optimal solution by just solving a convex optimization problem. As representative examples, we consider two binary quadratic energy functionals related to image labeling and perceptual grouping. Both problems can be considered as instances of a general quadratic functional in binary variables, which is embedded into a higher-dimensional space such that sub optimal solutions can be computed as minima of linear functionals over cones in that space (semidefinite programs). Extensive numerical results reveal that, on the average, sub optimal solutions can be computed which yield a gap below 5% with respect to the global optimum in case where this is known.
منابع مشابه
A full NT-step O(n) infeasible interior-point method for Cartesian P_*(k) –HLCP over symmetric cones using exponential convexity
In this paper, by using the exponential convexity property of a barrier function, we propose an infeasible interior-point method for Cartesian P_*(k) horizontal linear complementarity problem over symmetric cones. The method uses Nesterov and Todd full steps, and we prove that the proposed algorithm is well define. The iteration bound coincides with the currently best iteration bound for the Ca...
متن کاملOptimizing Schrödinger Functionals Using Sobolev Gradients: Applications to Quantum Mechanics and Nonlinear Optics
In this paper we study the application of the Sobolev gradients technique to the problem of minimizing several Schrödinger functionals related to timely and difficult nonlinear problems in Quantum Mechanics and Nonlinear Optics. We show that these gradients act as preconditioners over traditional choices of descent directions in minimization methods and show a computationally inexpensive way to...
متن کاملA Block-Grouping Method for Image Denoising by Block Matching and 3-D Transform Filtering
Image denoising by block matching and threedimensionaltransform filtering (BM3D) is a two steps state-ofthe-art algorithm that uses the redundancy of similar blocks innoisy image for removing noise. Similar blocks which can havesome overlap are found by a block matching method and groupedto make 3-D blocks for 3-D transform filtering. In this paper wepropose a new block grouping algorithm in th...
متن کاملEnhancement of Learning Based Image Matting Method with Different Background/Foreground Weights
The problem of accurate foreground estimation in images is called Image Matting. In image matting methods, a map is used as learning data, which is produced by those pixels that are definitely foreground, definitely background ,and unknown. This three-level pixel map is often referred to as a trimap, which is produced manually in alpha matte datasets. The true class of unknown pixels will be es...
متن کاملSelf-Scaled Barrier Functions: Decomposition and Classi cation
The theory of self-scaled conic programming provides a uniied framework for the theories of linear programming, semideenite programming and convex quadratic programming with convex quadratic constraints. Nesterov and Todd's concept of self-scaled barrier functionals allows the exploitation of algebraic and geometric properties of symmetric cones in certain variants of the barrier method applied...
متن کامل